

 Navigation

 	sortedfile 0.1 documentation

sortedfile

http://github.com/dw/sortedfile

When handling large text files it is often desirable to access some subset
without first splitting, or using a database where import and index creation is
required. When data is already sorted, such as with logs or time series, this
can be exploited to efficiently locate interesting subsets. This module is
analogous to the bisect [http://docs.python.org/2/library/bisect.html]
module, allowing search of sorted file content in logarithmic time.

Given a 1 terabyte file, 40 seeks are required, resulting in an expected
600ms search on a mechanical disk under pessimistic assumptions. With SSDs
having <0.16ms seeks the same scenario could yield 150 searches/second, and
significantly more when allowing for caching.

Common Parameters

In addition to those described later, each function accepts the following
optional parameters:

	key:

	Indicates a function (in the style of sorted(..., key=)) that maps lines
to ordered values to be used for comparison. Provide key to extract a
unique ID or timestamp. Lines are compared lexicographically by default.

	lo:

	Lowest offset in bytes, useful for skipping headers or to constrain a search
using a previous search. For line oriented search, one byte prior to this
offset is included in order to ensure the first line is considered complete.
Defaults to 0.

	hi:

	Highest offset in bytes. If the file being searched is weird (e.g. a UNIX
special device), specifies the highest bound to access. By default
getsize() is used to probe the file size.

Functions

Five functions are provided in two variants, one for variable length lines and
one for fixed-length records. Fixed length versions are more efficient as they
require log(length) fewer steps.

For line oriented functions, a seekable file is any object with functional
readline() and seek(), whereas for record oriented functions it is any
object with read() and seek().

File Search

	
sortedfile.bisect_seek_left(fp, x, lo=None, hi=None, key=None)[source]

	Position the sorted seekable file fp such that all preceding lines are
less than x. If x is present, the file is positioned on its first
occurrence.

	
sortedfile.bisect_seek_right(fp, x, lo=None, hi=None, key=None)[source]

	Position the sorted seekable file fp such that all subsequent lines
are greater than x. If x is present, the file is positioned past its
last occurrence.

	
sortedfile.bisect_seek_fixed_left(fp, n, x, lo=None, hi=None, key=None)[source]

	Position the sorted seekable file fp such that all preceding n byte
records are less than x. If x is present, the file is positioned on its
first occurrence.

	
sortedfile.bisect_seek_fixed_right(fp, n, x, lo=None, hi=None, key=None)[source]

	Position the sorted seekable file fp such that all subsequent n byte
records are greater than x. If x is present, the file is positioned
past its last occurrence.

File Iteration

	
sortedfile.iter_exclusive(fp, x, y, lo=None, hi=None, key=None)[source]

	Iterate lines of the sorted seekable file fp satisfying
x < line < y.

	
sortedfile.iter_inclusive(fp, x, y, lo=None, hi=None, key=None)[source]

	Iterate lines of the sorted seekable file fp satisfying
x <= line <= y.

	
sortedfile.iter_fixed_exclusive(fp, n, x, y, lo=None, hi=None, key=None)[source]

	Iterate n byte records of the sorted seekable file fp satisfying
x < record < y.

	
sortedfile.iter_fixed_inclusive(fp, n, x, y, lo=None, hi=None, key=None)[source]

	Iterate n byte records of the sorted seekable file fp satisfying
x <= record <= y.

Generic Search

These purely implement the bisection algorithm, using a user-provided function
to access keys to compare. lo and hi must always be specified.

	
sortedfile.bisect_func_left(x, lo, hi, func)[source]

	Bisect func(i), returning an index such that preceding values are less
than x. If x is present, the returned index is its first occurrence.
EOF is assumed if func returns None.

	
sortedfile.bisect_func_right(x, lo, hi, func)[source]

	Bisect func(i), returning an index such that consecutive values are
greater than x. If x is present, the returned index is past its last
occurrence. EOF is assumed if func returns None.

Utilities

	
sortedfile.extents(fp, lo=None, hi=None)[source]

	Return a tuple of the first and last lines from the seekable file
fp.

	
sortedfile.extents_fixed(fp, n, lo=None, hi=None)[source]

	Return a tuple of the first and last n byte records from the seekable
file fp.

	
sortedfile.getsize(fp)[source]

	Return the size of fp if it is a physical file, StringIO, or
mmap.mmap, otherwise raise ValueError.

	
sortedfile.warm(fp, lo=None, hi=None)[source]

	Encourage the seekable file fp to become cached by reading from it
sequentially.

Example

Dump the past 15 minutes syslog:

YEAR = time.localtime().tm_year

def parse_ts(s):
 """Parse a UNIX syslog date out of `s`."""
 tt = time.strptime(s[:15], '%b %d %H:%M:%S')
 return time.struct_time((YEAR,) + tt[1:])

it = sortedfile.iter_inclusive(
 fp=open('/var/log/messages'),
 x=time.localtime(time.time() - (60 * 15)),
 y=time.localtime(),
 key=parse_ts)
sys.stdout.writelines(it)

Performance

Tests use a 100GB file containing 1.073 billion 100 byte records with the
record number left justified to 99 bytes followed by a newline, allowing both
line and record oriented search. The key function uses str.partition() to
extract the record number before passing it to int(), emulating extraction
from a record populated with data other than whitespace.

Cold Cache

After clearing the buffer cache on a 2010 Macbook Pro with a Samsung
HN-M500MBB:

$./bench.py
770 recs in 60.44s (avg 78ms dist 33080mb / 12.74/sec)

And the fixed record variant:

$./bench.py fixed
1160 recs in 60.28s (avg 51ms dist 35038mb / 19.24/sec)

19 random searches per second on a billion records, not bad for budget spinning
rust. bench.py could be tweaked to more thoroughly dodge the various
caches in play, but seems a fair test as-is.

Reading 100 consecutive records following each search provides some indication
of throughput in a common case:

$./bench.py fixed span100
101303 recs in 60.40s (avg 0.596ms / 1677.13/sec)

Hot Cache

bench.py warm is more interesting: instead of load uniformly distributed
over the set, readers only care about recent data. Requests are generated for
the bottom 4% of the file (i.e. 4GB or 43 million records), with an initial
warming that pre-caches this region. mmap.mmap is used in place of file
for its significant performance edge when IO is fast (e.g. cached).

After warmup, fork() to avail of both cores:

$./bench.py warm mmap smp
611674 recs in 60.00s (avg 98us dist 0mb / 10194.00/sec)

And the fixed variant:

$./bench.py fixed warm mmap smp
751375 recs in 60.01s (avg 79us dist 0mb / 12521.16/sec)

Around 6250 random reads per second per core over 43 million records from a set
of 1 billion, using only sorted text and a 23 line function.

And for consecutive sequential reads:

$./bench.py fixed mmap smp warm span100
15396036 recs in 60.01s (avg 0.004ms / 256578.04/sec)

Notes

Threads and mmap.mmap

Since mmap.mmap does not drop the GIL during reads, page faults will hang a
process attempting to serve cold data to clients using threads. file does
not have this problem, nor does forking a process per client, or maintaining a
process pool.

Buffering

When using file, performance may vary according to the buffer size set for
the file and target workload. For random reads of single records, a buffer that
approximates double the average record length will work better, whereas for
searches followed by sequential reads a larger buffer may be preferable.

Interesting Uses

Since the input’s size is checked on each call when hi isn’t specified, it
is trivial to have concurrent readers and writers, so long as writers take care
to open the file as O_APPEND, and emit records no larger than the maximum
atomic write size for the operating system. On Linux, since write() holds a
lock, it should be possible to write records of arbitrary size.

However since each region’s midpoint will change as the file grows, this mode
may not interact well with caching without further mitigation. Another caveat
is that under IO/scheduling contention, it is possible for writes from multiple
processes to occur out of order, although depending on the granularity of the
key this may not be a problem.

When dealing with many small objects (e.g. lists of strings or integers) that
can be easily serialized in-order to a StringIO, RAM use can be greatly
reduced while still allowing fast access. For example with lists of integers,
memory usage drops by up to 90% on a 64 bit machine.

Improvements

It should be possible to squeeze more performance from file by paying
attention to the operating system’s needs, for example read alignment and
posix_fadvise. Single-threaded file performance is significantly worse
than mmap.mmap, this is almost certainly not inherent, more likely it is
due to a badly designed test.

Additionally unlike mmap.mmap, calling file.seek() invokes a real
system call, which may be generating more work than is apparent. The
implementation could be improved to remove at least some of these calls.

 Copyright 2012, David Wilson.

 search.html

 Navigation

 		sortedfile 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, David Wilson.

_modules/index.html

 Navigation

 		sortedfile 0.1 documentation »

 All modules for which code is available

		sortedfile

 © Copyright 2012, David Wilson.

_static/up-pressed.png

_static/plus.png

_static/down.png

_modules/sortedfile.html

 Navigation

 		sortedfile 0.1 documentation »

 		Module code »

 Source code for sortedfile

#
Copyright 2012, David Wilson

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

"""
Efficient seeking within sorted text files. Works by implementing in-place
binary search on the lines of the file, with a small hack to handle the first
line of the file.

See accompanying documentation for more information.
http://sortedfile.readthedocs.org/
"""

If user specifies the exact start of a line using the `lo` parameter, due to
logic below we always skip the first read substring after a seek. Therefore
we subtract one from `lo` if it is provided to the bisect() functions to
ensure the user's full intended line is seen.

import functools
import itertools
import os

try:
 from mmap import mmap as _mmap
except ImportError:
 _mmap = None

[docs]def getsize(fp):
 """Return the size of `fp` if it is a physical file, ``StringIO``, or
 ``mmap.mmap``, otherwise raise ValueError."""
 if hasattr(fp, 'getvalue'):
 return len(fp.getvalue())
 elif _mmap and isinstance(fp, _mmap):
 return len(fp)
 elif hasattr(fp, 'name') and os.path.exists(fp.name):
 return os.path.getsize(fp.name)
 else:
 raise ValueError("can't get size of %r" % (fp,))

[docs]def warm(fp, lo=None, hi=None):
 """Encourage the seekable file `fp` to become cached by reading from it
 sequentially."""
 lo = lo or 0
 hi = hi or getsize(fp)
 fp.seek(lo)
 s = ' '
 while s and hi >= 0:
 s = fp.read(10485760)
 hi -= len(s) if s else hi

[docs]def bisect_seek_left(fp, x, lo=None, hi=None, key=None):
 """Position the sorted seekable file `fp` such that all preceding lines are
 less than `x`. If `x` is present, the file is positioned on its first
 occurrence."""
 lo = (lo - 1) if lo else 0
 hi = hi or getsize(fp)
 key = key or (lambda s: s)

 while lo < hi:
 mid = (lo + hi) // 2
 fp.seek(mid)
 if mid:
 fp.readline()
 s = fp.readline()
 if s and key(s) < x:
 lo = mid + 1
 else:
 hi = mid

 fp.seek(lo)
 if lo:
 fp.readline()

[docs]def bisect_seek_right(fp, x, lo=None, hi=None, key=None):
 """Position the sorted seekable file `fp` such that all subsequent lines
 are greater than `x`. If `x` is present, the file is positioned past its
 last occurrence."""
 lo = (lo - 1) if lo else 0
 hi = hi or getsize(fp)
 key = key or (lambda s: s)

 while lo < hi:
 mid = (lo + hi) // 2
 fp.seek(mid)
 if mid:
 fp.readline()
 s = fp.readline()
 if s and x < key(s):
 hi = mid
 else:
 lo = mid + 1

 fp.seek(lo)
 if lo:
 fp.readline()

[docs]def bisect_seek_fixed_left(fp, n, x, lo=None, hi=None, key=None):
 """Position the sorted seekable file `fp` such that all preceding `n` byte
 records are less than `x`. If `x` is present, the file is positioned on its
 first occurrence."""
 lo = lo or 0
 key = key or (lambda s: s)
 rlo = lo / n
 rhi = (hi or getsize(fp)) / n

 while rlo < rhi:
 mid = (rlo + rhi) // 2
 fp.seek(lo + (mid * n))
 s = fp.read(n)
 if s and key(s) < x:
 rlo = mid + 1
 else:
 rhi = mid

 fp.seek(lo + (rlo * n))

[docs]def bisect_seek_fixed_right(fp, n, x, lo=None, hi=None, key=None):
 """Position the sorted seekable file `fp` such that all subsequent `n` byte
 records are greater than `x`. If `x` is present, the file is positioned
 past its last occurrence."""
 lo = lo or 0
 key = key or (lambda s: s)
 rlo = lo / n
 rhi = (hi or getsize(fp)) / n

 while rlo < rhi:
 mid = (rlo + rhi) // 2
 fp.seek(lo + (mid * n))
 s = fp.read(n)
 if s and x < key(s):
 rhi = mid
 else:
 rlo = mid + 1

 fp.seek(lo + (rlo * n))

[docs]def bisect_func_left(x, lo, hi, func):
 """Bisect `func(i)`, returning an index such that preceding values are less
 than `x`. If `x` is present, the returned index is its first occurrence.
 EOF is assumed if `func` returns None."""
 while lo < hi:
 mid = (lo + hi) // 2
 k = func(mid)
 if k is not None and k < x:
 lo = mid + 1
 else:
 hi = mid

 return lo, k

[docs]def bisect_func_right(x, lo, hi, func):
 """Bisect `func(i)`, returning an index such that consecutive values are
 greater than `x`. If `x` is present, the returned index is past its last
 occurrence. EOF is assumed if `func` returns None."""
 while lo < hi:
 mid = (lo + hi) // 2
 k = func(mid)
 if k is not None and x < k:
 hi = mid
 else:
 lo = mid + 1

 return lo, k

[docs]def extents(fp, lo=None, hi=None):
 """Return a tuple of the first and last lines from the seekable file
 `fp`."""
 lo = (lo - 1) if lo else 0
 hi = hi or getsize(fp)
 bisect_seek_left(fp, '', lo, hi)
 low = fp.readline()

 for offset in xrange(0, 1048576, 4096):
 fp.seek(hi - offset)
 _, sep, high = fp.read(offset - 1).rstrip('\n').rpartition('\n')
 if sep:
 return low, high

[docs]def extents_fixed(fp, n, lo=None, hi=None):
 """Return a tuple of the first and last `n` byte records from the seekable
 file `fp`."""
 lo = lo or 0
 hi = hi or getsize(fp)
 bisect_seek_fixed_left(fp, n, '', lo, hi)
 low = fp.read(n)
 recs = (hi - lo) // n
 fp.seek(lo + (n * (recs - 1)))
 return low, fp.read(n)

[docs]def iter_inclusive(fp, x, y, lo=None, hi=None, key=None):
 """Iterate lines of the sorted seekable file `fp` satisfying
 `x <= line <= y`."""
 key = key or (lambda s: s)
 bisect_seek_left(fp, x, lo, hi, key)
 pred = lambda s: x <= key(s) <= y
 return itertools.takewhile(pred, iter(fp.readline, ''))

[docs]def iter_exclusive(fp, x, y, lo=None, hi=None, key=None):
 """Iterate lines of the sorted seekable file `fp` satisfying
 `x < line < y`."""
 key = key or (lambda s: s)
 bisect_seek_right(fp, x, lo, hi, key)
 pred = lambda s: x < key(s) < y
 return itertools.takewhile(pred, iter(fp.readline, ''))

[docs]def iter_fixed_inclusive(fp, n, x, y, lo=None, hi=None, key=None):
 """Iterate `n` byte records of the sorted seekable file `fp` satisfying
 `x <= record <= y`."""
 key = key or (lambda s: s)
 bisect_seek_fixed_left(fp, n, x, lo, hi, key)
 pred = lambda s: x <= key(s) <= y
 return itertools.takewhile(pred, iter(functools.partial(fp.read, n), ''))

[docs]def iter_fixed_exclusive(fp, n, x, y, lo=None, hi=None, key=None):
 """Iterate `n` byte records of the sorted seekable file `fp` satisfying
 `x < record < y`."""
 key = key or (lambda s: s)
 bisect_seek_fixed_right(fp, n, x, lo, hi, key)
 pred = lambda s: x < key(s) < y
 return itertools.takewhile(pred, iter(functools.partial(fp.read, n), ''))

 © Copyright 2012, David Wilson.

_static/file.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/nosql-guy.jpg
WEB SCALE PROBLEM

BETTER USE MONGODB

_static/minus.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

